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AbstrAct

Use of cutoff values for model fit indices to assess dimensionality of binary data representing 
scores on multiple-choice items is a popular approach among researchers and practitioners, 
and the commonly used cutoff values are based on simulation studies that used as the gener-
ating model factor analysis models, which are compensatory models without modeling guess-
ing. Consequently, it remains unknown how those cutoff values for model fit indices would 
perform when (a) guessing exists in data, and (b) data follow a noncompensatory multidimen-
sional structure. In this paper, we conducted a comprehensive simulation study to investigate 
how guessing affected the statistical power of commonly used cutoff values for RMSEA, CFA, 
and TLI (RMSEA > 0.05; CFA < 0.95; TLI < 0.95) to detect violation of unidimensionality of 
binary data with both compensatory and noncompensatory models. The results indicated that 
when data were generated with compensatory models, increase of guessing values resulted in 
the systematic decrease of the power of RMSEA, CFA, and TLI to detect multidimensionality 
and in some conditions, a small increase of guessing value can result in dramatic decrease of 
their statistical power. It was also found that when data were generated with noncompensatory 
models, use of cutoff values of RMSEA, CFA, and TLI for unidimensionality assessment had 
unacceptably low statistical power, and while change of guessing magnitude could consider-
ably change their statistical power, such changes were not systematic as in the compensatory 
models.
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1. introduction

As one of the pivotal assumptions of item response 
theory (IRT), unidimensionality stipulates that 
item responses are driven by a single underlying 

latent variable. Numerous studies have shown that viola-
tions of the assumption of unidimensionality can lead to 
serious psychometric consequences such as biased item 
parameter estimates, equating errors, and misclassification 
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of examinees[1][2][3][4]. Aside from its critical importance
in the valid application of IRT, the other two reasons that
unidimensionality is of particular interest to researchers
and practitioners, as summarized by Stout, are that the pri-
mary ability a test intends to measure should not be con-
taminated by other abilities and a unified latent variable is
the precondition of meaningful comparison of individu-
als[5].

Probably due to its statistical importance and concep-
tual attractiveness, unidimensionality has received exten-
sive attention in the psychometric literature[6][7][8][9] and a
plethora of methods have been developed to assess unidi-
mensionality[10][11][12][13][14][15][16][17][18]. Among them, factor
analytic methods, "an important tool"[19] for dimensional-
ity assessment of IRT models, are especially attractive to
many structural equation modeling (SEM)[20] research-
ers since such methods are housed in the familiar SEM
framework and require no additional IRT-based software
programs other than common SEM ones. In this paper we
focus on one such factor analytic method, namely the use
of cutoff values of fit indices within SEM framework to
assess unidimensionality with binary data. We assume that
the binary data are item scores of multiple choice items
and consequently, guessing is expected to exist within the
data.

The use of fit indices for unidimensionality assessment
makes intuitive sense in light of the mathematical equiv-
alence between factor models with categorical variables
and IRT[21][22][23][24][25]: if fit indices can be used to assess
whether a one-factor model fits data satisfactorily, why
cannot they be used to test whether a two-parameter nor-
mal ogive model, the IRT analog of the one-factor model
with categorical variables, represents the data well? If
these fit indices indicate good model fit based on some
well-established cutoff values, it is concluded that the
unidimensionality assumption is not violated. Despite its
logical intuitiveness, this fit-index-based approach with
binary data makes two implicit assumptions: first, those
well-established cutoff values of model fit indices are
applicable to cases of unidimensionality assessment with
binary data; second, such cutoff values are robust to the
existence of guessing.

The cutoff criteria for model fit indices proposed by
Hu and Bentler[26] have been hugely popular among re-
searchers interested in assessing the latent structure of
their data. Although unidimensionality assessment is not
included as a condition in their simulation study, these
cutoff values have been nevertheless used by SEM re-
searchers for unidimensionality assessment[27]. Despite
their tremendous popularity, researchers have raised
concerns about indiscriminate use of those indices[28]

[29][30][31][32], on the grounds that these fit indices are sen-
sitive to different type of model misspecifications and 
consequently, establishment of cutoff values for model 
fit indices that are universally applicable is, if not impos-
sible, very difficult. As pointed out by Huggins-Manley 
and Han[33], Hu and Bentler's simulation study[26], as well 
as other similar simulation studies[34][35] that address es-
tablishment of cutoff values, focus on misspecifications 
of factor loadings and/or latent variable correlations in 
multidimensional models. It remains unclear how model 
fit indices would perform when a unidimensional model 
is imposed upon data generated with multidimensional 
models.   

While the impact of model misspecification type upon 
performances of model fit indices has been extensively 
studied in the literature, measurement quality, which can 
tremendously change the statistical behavior of model 
fit indices, fails to receive attention from researchers 
and practitioners with a few exceptions[36][37]. As demon-
strated by McNeish, An, and Hancock, change of mea-
surement quality (operationalized through the change of 
magnitude of standardized factor loadings) can result in 
drastically different distributions of model fit indices[36] 
and consequently, the model fit indices are meaningless 
without taking into consideration the standardized factor 
loadings. If measurement quality is conceptualized as 
the strength of the relation between indicators and the 
target latent variable, we argue that measurement quality 
can deteriorate with either the decrease of magnitude of 
standardized factor loadings, or with the introduction 
of guessing and the increase of guessing magnitude. As 
measurement quality can also be affected by the exis-
tence of guessing, we believe that the expected ubiq-
uitous existence of guessing due to the common use of 
multiple-choice questions in educational setting, is of 
huge relevance when it comes to the dimensionality as-
sessment of binary data. Since the common cutoff values 
of model fit indices were proposed in the factor analysis 
framework and based on data generating models that do 
not incorporate guessing, we believe their performances 
will be negatively affected by guessing based on pre-
vious studies that investigated the effect of guessing in 
factor analysis models[38][39][40]. To date, there have been 
no simulation studies that systematically investigate the 
guessing effect upon the performances of cutoff values 
of model fit indices. 

Aside from guessing, another factor that has not re-
ceived sufficient attention in the literature regarding 
the use of model fit indices for model assessment is the 
multidimensional nature of data (whether data exhibits 
compensatory or noncompensatory multidimensionality). 
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While educational and psychological researchers usually
focus on compensatory multidimensionality, noncom-
pensatory multidimensionality occurs occasionally in
some educational test items that require multiple skills
and inadequacy in one skill cannot be compensated by
other skills[41]. In the aforementioned simulation studies
that dealt with categorical indicators[34][35], the research-
ers generated data based on factor analysis models that
are equivalent to the compensatory IRT models, and it
remains unknown how model fit indices, which are based
on the factor analysis framework and therefore com-
pensatory IRT models, will perform with data generated
with noncompensatory IRT models. Previous studies
have indicated that common dimensionality assessment
methods that perform well with compensatory models
may fall short with noncompensatory ones[42][43]. In addi-
tion, it is equally unclear whether and how guessing sys-
tematically affect the performances of cutoff values of
model fit indices with data following noncompensatory
structures.

The purpose of this study is to systematically investi-
gate the impact of guessing upon the statistical power of
cutoff criteria of model fit indices to refute unidimension-
ality when data are generated with both compensatory
and noncompensatory IRT models. Specifically, since the
standardized root mean square residual (SRMR) is not
recommended for dichotomous items[35], we focus on the
comparative fit index (CFI), the Tucker-Lewis Index (TLI),
and the root mean square error of approximation (RM-
SEA), which are the also the fit indices reported in the
popular latent variable modeling software Mplus[44] with
the default weighted least squares mean- and variance-ad-
justed[45] estimator for categorical variables. Due to the ex-
istence of a large body of literature that provides excellent
review of model fit indices, we do not review CFI, TLI,
and RMSEA in this paper but refer interested readers to [46]

for a comprehensive introduction[46].
The remainder of this paper is organized as follows.

First, we review some influential simulation studies in
which the commonly used cutoff values of fit indices were
either established or validated. Next, we review previous
studies that have investigated the effect of guessing in the
factor analysis framework, followed by a review of studies
dealing with dimensionality assessment of data generated
with noncompensatory IRT models. In the method section
we present two simulation studies conducted
to investigate how commonly used cutoff values of
CFI, TLI, and RMSEA perform with binary data
generated with both compensatory and
noncompensatory IRT models. We conclude this paper
with conclusions and discussions, as well as some
advice for applied researchers and practitioners who are

 interested in using model fit indices for unidimensionality
assessment.

2. literature review

2.1 Simulation Studies on Model Fit indices
In their highly influential study, Hu and Bentler[26] gener-
ated continuous data based on two model types (complex
and simple), both of which assumed fifteen observed vari-
ables and three factors. They fixed the factor variances to
1.0 and the correlation between factors to 0.5, 0.4, and 0.3.
For the simple model type, five variables load on each fac-
tor and there are no cross loadings; for the complex model
type, one out of five variables that loads on one specific
factor has a cross loading with another factor. They cre-
ated seven data generation conditions by manipulating
factors such as normality and correlation between factors
and errors. To create scenarios of model misspecification,
they either constrained the between factor correlation or
some cross factor loadings to be zero. They created 200
replicated datasets within each condition and established
the following cutoff values for model fit indices based on
their simulation results: RMSEA < 0.06, CFI > 0.95, TLI
> 0.95.

As Yu[35] decisively pointed out, Hu and Bentler's sim-
ulation study was based on maximum likelihood (ML)
estimation method with continuous data, which is not
suitable for categorical data usually estimated with robust
diagonally weighted least square (DWLS) estimation
methods. Since DWLS and ML use different fit functions
and hence the chi-square values are different, the behavior
of chi-square-based model fit indices might be different
across different estimation methods and the cutoff values
proposed out of simulation studies using one estimation
method should not be generalized to other methods. She
followed a similar simulation study design as Hu and
Bentler's but focused on categorical outcomes and WLS-
MV estimator, the robust DWLS estimation method im-
plemented in Mplus. She found that SRMR is not a good
mode fit index for binary outcomes. TLI > 0.95 seems to
perform satisfactorily when the sample size is greater than
250; for CFI, she found that CFI > 0.96 seems to perform
better than CFI > 0.95; with RMSEA, she found that RM-
SEA < 0.05 outperforms RMSEA < 0.06.

Driven by the realization that Hu and Bentler's study
was based on ML estimator with continuous outcomes
and consequently, their proposed cutoff values of model
fit indices might not generalize to cases of categorical out-
comes estimated with DWLS estimator, Nye and Drasgow
[34] conducted a simulation study to investigate how the
cutoff values proposed by Hu and Bentler performed with
binary data estimated with the DWLS estimator imple-
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mented in LISREL 8.71[47]. Specifically, they simulated 
data from a two-factor model (the between factor correla-
tion was fixed at 0.3) with 15 variables that either load on 
one factor or both factors; they manipulated the sample 
size to have three levels (400, 800, and 1600); they further 
manipulated the underlying distribution to have three lev-
els (multivariate normal, moderately skewed, and severely 
skewed); they created misspecification scenarios by either 
constraining some factor loadings to be zero or both some 
factor loadings and between factor correlation to zero. 
They found that the commonly used cutoff values did 
not have enough power with DWLS estimator and more 
stringent values need to be used, and they concluded that 
simple cutoff values for model fit indices would not work 
since model fit can only be evaluated effectively in com-
bination with the specific data. 

While both Yu[35] and Nye and Drasgow[34] investigated 
the performances of these model fit indices with DWLS 
estimator and binary outcomes, neither included guessing 
in their data generation process and as a result, the effect 
of guessing upon the performance of model fit indices 
remains unclear. In addition, both simulations studies 
simulated data base on some factor analysis models and 
consequently, it is unknown how these model fit indices 
would perform with data generated with noncompensato-
ry IRT models. Another difference is the nature of model 
misspecification: in both studies model misspecification 
takes the form of erroneous between-factor correlations 
or factor loadings, which is different from imposing a 
unidimensional structure upon data with multidimensional 
nature-the misspecification scenario we focus on in the 
current study.

2.2 Guessing in the Factor Analysis Framework
The effect of guessing is rarely investigated in the factor 
analysis framework. Among the few studies available, 
carrol[48] found that when guessing was modeled, the 
tetrachoric correlations were corrected and hence stron-
ger relation among the indicators were expected. In other 
words, if guessing was not modeled, the tetrachoric cor-
relations would be attenuated relative to the true values. 
Considering that DWLS estimator is based on the estima-
tion of tetrachoric correlations, such attenuation effects 
are expected to exist with data generated with guessing in 
the factor analysis framework. 

Subsequent studies corroborate Carrol's findings. 
tate[39] conducted a simulation study to investigate how 
guess affects decisions regarding dimensionality and pa-
rameter recovery in both exploratory factor analysis (EFA) 
and confirmatory factor analysis (CFA). He found that 
with guessing parameter fixed to be 0.2 in various multidi-
mensional models, both EFA and CFA based on tetracho-
ric correlations uncorrected for guessing resulted in lower 

power to identify the true dimensionality. In terms of pa-
rameter recovery, the item thresholds and factor loadings
in both EFA and CFA showed downward biases, which
range in magnitude from 0.1 to 0.8 for item thresholds,
and from 0.1 to 0.5 for factor loadings. Such biases were
exacerbated with extreme item difficulties and discrimina-
tions.

Stone and Yeh[38] also investigated the guessing effect
in EFA implemented in TESTFACT[49] using the Multi-
state Bar Examination data. They found that when guess-
ing was modeled, the first eigenvalue of exploratory factor
analysis (EFA) become larger and more items loaded sub-
stantially on factors. In addition, the average tetrachoric
correlation increased from 0.07 to 0.11.  Yeh conducted a
large-scale simulation study to investigate guessing effect
in EFA implemented in Mplus and TESTFACT[40]. Using
a fixed sample size of 2,000 and a test length of 60 items,
she systematically manipulated the number of dimen-
sions, item discrimination parameters, between dimension
correlations, and guessing magnitude to create various
simulation conditions. Within each condition, 100 datasets
were generated and estimated with EFA procedures im-
plemented in both Mplus and TESTFACT. She found that
TESTFACT, which allows the users to provide guessing
values, outperformed Mplus in most simulation conditions
regarding the ability to confirm the correct dimensionality.

2.3 Noncompensatory Mirt Model
Multidimensional IRT (MIRT)[50] models consist of com-
pensatory and noncompensatory cases. Whereas the com-
pensatory MIRT model is mathematically equivalent to a
multi-factor model with categorical indicators (which is
also known as a nonlinear factor model), the noncompen-
satory MIRT model does not have an equivalent counter-
part in the factor analysis framework. The mathematical
equation for a three parameter logistic noncompensatory
MIRT model[51] takes the following form:

1

1( 1 | , , , ) (1 )
1 exp( ( ))

D

ij j j j
d jd id jd

P U c c c
a bθ=

= = + −
+ − −∏i j jè a b

 (1)
where Uij is the response of examinee i to item j, D is 

the number of dimensions, θid is the ability of examinee i 
on dimension d, ajd and bjd are the discrimination parame-
ter and difficulty parameter of item j on dimension d, and 
cj is the lower asymptote of item j . As indicated by the Pi 
notation, the noncompensatory MIRT model assumes that 
inadequacy in one dimension cannot be completely com-
pensated by adequacy in another dimension. 

Comparing to a large number of methodological stud-
ies investigating the performance of various dimension-
ality assessment techniques with data generated using 
the compensatory model, there are considerably fewer 
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ones focusing on data with noncompensatory structures. 
Among those few, Hattie, Krakowski, Rogers, and Swa-
minathan[42] investigated the performance of Stout's in-
dex of essential unidimensionality implemented in the 
DIMSEST software[5] with data generated using both the 
compensatory and noncompensatory model. They found 
that the DIMTEST procedure performed poorly when the 
data was generated with the latter model, and attributed 
its poor performance to the problems in estimating tetra-
choric correlations. A more recent study is a simulation 
study conducted by Svetina[43], in which she generated 
data using the 2PL noncompensatory MIRT model and 
compared the performance of two methods (exploratory 
vs. cross validated) based on DETECT (Dimensionality 
Evaluation To Enumerate Contributing Traits)[52][18][53] and 
three methods[54][55][39] based on NOHARM (Normal Ogive 
Harmonic Analysis Robust Method)[56]. Having found that 
the performances of those methods can only be considered 
acceptable in a small number of conditions, she suggest-
ed that further studies be conducted before consideration 
of applying those methods to data suspected of having 
noncompensatory structure. It should be noted that in the 
above two studies, the magnitude of guessing was not 
systematically investigated: in the first study Hattie and et 
al. manipulated the lower asymptote to be either 0 or 0.15; 
Svetina only considered a 2PL model in which the guess-
ing is assumed not to exist.

3. Methodology

3.1 Outcome Variable
A one-factor model was fit to each generated data set 
using Mplus with WLSMV estimator and RMSEA, CFI, 
and TLI were computed. For each of these three model fit 
indices, we computed its empirical power rate, which is 
the number of times that the model fit is considered poor 
divided by the number of replications within a simulation 
condition, using the following cutoff values: RMSEA > 
0.05, CFI < 0.95, TLI < 0.95. It should be noted that for 
the sake of simplicity, in the following sections we use 
terms such as the power of RMSEA to refer to the power 
of using the cutoff value RMSEA > 0.05, the power of 
CFI for the power of using the cutoff value CFI < 0.95, 
and the power of CFI for the power of using the cutoff 
value TLI < 0.95.

3.2 Study Design
In both the compensatory and noncompensatory cases, the 
number of dimensions were fixed to three and following 
factors were manipulated:
1) Sample size (500, 1,000, or 2,000)
2) Number of items (30 or 60)

3) Between dimension correlation (0, 0.3, 0.5, and 0.7)
4) Pseudo-guessing value (0, 0.1, 0.2, 0.3, and 0.4)

For both the compensatory and noncompensatory 
cases, we have a fully crossed design with 3*2*4*5=120 
conditions. Within each condition, we generated 1,000 
datasets based on the corresponding MIRT model.

3.3 item response Generation
For both compensatory and noncompensatory cases, latent 
abilities were generated from three-dimensional multi-
variate normal distributions with a mean vector of 0s and 
a variance vector of 1s, and different levels of between 
dimension correlation values as specified in the previous 
section. Another commonality between the compensatory 
and noncompensatory cases is the systematic manipu-
lation of pseudo-guessing values. The two cases differ 
regarding the generated item discrimination and difficulty 
parameter values. 

For the compensatory case, the following three-dimen-
sional three-parameter logistic (3PL) item response theory 
(IRT) model was used to generate item responses:

1( 1 | , , , ) (1 )
1 exp( ))ij j j j j

i j

P U d c c c
d

= = + −
+ − +i j

j

θ a
a θ

 (2)

where aj is a vector of item j's discrimination parame-
ters on the three dimensions, θi is a vector of examinee i's 
scores on the three dimensions, dj is item j's multidimen-
sional difficulty parameter, and  cj is the pseudo-guessing 
parameter. For item discrimination and difficulty parame-
ters aj and dj , we used values provided by Reckase[50] as a 
realistic approximation of tests of simple structure. Since 
there are only 30 sets of item parameters, we generated 
another 30 similar items: for aj , we added a random val-
ue drawn from N (0, 0.02) to each of the original 30 sets 
of discrimination parameters; for dj , we added a random 
value drawn from N (0, 0.1) to each of the original 30 
difficulty parameters. When the number of items is 30, 
only the first 30 sets of item discrimination and difficulty 
parameters were used for item response generation; when 
the number of items is 60, all 60 sets of item discrimina-
tion and difficulty parameters were used.

For the noncompensatory case, we followed the same 
item generating scheme adopted by Svetina[43]: item diffi-
culty parameters were generated to fall in the range of -1.5 
to 1.5 with an increment of 0.75, and item discrimination 
parameters on the dominant dimension were generated 
to range from 0.8 to 1.6 with an increment of 0.2, while 
on the remaining two dimensions they were generated to 
be 0.2 smaller than their counterparts on the dominant 
dimension. Items responses were generated based on the 
model specified in Equation 1.
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4. results

4.1 compensatory Model
Table 1 lists the power rates of RMSEA to correctly reject 
unidimensionality across different simulation conditions; 
those of CFI and TLI appear in Tables 2-3. Specifically, 
the value within a cell indicates the number of times to 
reject unidimensionality divided by 1,000, when using the 
cutoff value for a given model fit index for data generated 
under a certain simulation condition. For example, the 
value 0.022 on the second row of Table 1 means that when 
sample size was fixed to 500 students and test length to 
30 items, by applying RMSEA > 0.05 only 22 datasets 
were correctly identified as multidimensional out of the 
1,000 datasets generated based on the 3PL MIRT model in 
Equation 2 with the between-dimension correlation equal 
to 0.5 (denoted as C3 in the table) and the pseudo-guess-
ing parameter equal to 0.1 (denoted as G2). Similarly, the 
value 0.033 on the third row of Table 2 means that when 
sample size was fixed to 2,000 students and test length to 
30 items, by applying CFI < 0.95 only 33 datasets were 
correctly identified as multidimensional out of the 1,000 
datasets generated based on a 3PL MIRT model with the 
between-dimension correlation equal to 0.7 (denoted as 
C4 in the table) and the pseudo-guessing parameter equal 
to 0.2 (denoted as G3). As can be seen, a common pattern 
for the three model fit indices is that their power decreas-
es with the decrease of sample size and the increase of 
guessing magnitude, between-dimension correlation, and 
test length.
table 1. Power of RMSEA to Reject Unidimensionality 

in Compensatory Models

table 2. Power of CFI to Reject Unidimensionality in 
Compensatory Models

table 3. Power of TLI to Reject Unidimensionality in 
Compensatory Models

4.1.1 Without Guessing

Figure 1 shows how RMSEA, CFA, and TLI perform with 
the baseline conditions (no guessing) at various combina-
tions of sample size, between-dimension correlation, and 
test length. Same as in tables 1-3, C1, C2, C3, and C4 on 
the horizontal axis represent the magnitude of between-di-
mension correlation; the values on the vertical axis, which 
range from zero to one, represent the statistical power of 
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applying the cutoff value of a given model fit index under 
different simulation conditions. For example, the upper 
left panel displays the statistical power of applying RM-
SEA > 0.05 with data generated with thirty items, three 
sample sizes, four levels of between-dimension correla-
tion, and without guessing.

As can be seen, when the correlation between the three 
dimensions is no greater than 0.5, all three indices have 
satisfactory power (greater than 0.9) to detect multidi-
mensionality regardless of sample size and test length, 
with the exception of RMSEA having low power (lower 
than 0.2) when the sample size is either 500 or 1000 and 
the test length is 60 items. When the between-dimension 
correlation increases to 0.7, RMSEA, CFI, and TLI have 
extremely low power (lower than 0.1) regardless of sam-
ple size and test length. Sample size seems to have no 
considerable effect when the correlation between dimen-
sions is no greater than 0.3, and the power only increases 
marginally with sample size increase when the correlation 

between dimensions is 0.5. One interesting pattern is 
that when the between-dimension correlation is 0.5, the 
performance of RMSEA is inversely related to the test 
length: its power with sample sizes of 500 and 1000 drops 
precipitously when the test length increases from 30 items 
to 60 items.  

4.1.2 impact of Guessing

As can be seen in Table 1, the power of RMSEA decreas-
es with the increase of guessing magnitude, correlation 
between dimensions, and test length. Its power increases 
marginally with the increase of sample size. Compared 
with RMSEA, neither CFI nor TLI is influenced by the 
increase of guessing magnitude when the correlation be-
tween dimensions is low: both have a power of one when 
the correlation is 0.3 or lower. When the correlation is 0.5 
or higher, however, the power of both decreases consid-
erably with the increase of guessing magnitude regardless 
of the sample size and test length.
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Figure 1. Power of RMSEA, CFI, and TLI with no guessing in compensatory models
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To further explore the guessing impact upon the sta-
tistical power of RMSEA, CFI, and TLI, in Figure 2 we 
plot the average power rate of each model fit index across 
three sample sizes. Same as in tables 1-3, G1, G2, G3, and 
G4 on the horizontal axis represent the guessing magni-
tude, and the vertical axis represents the average statistical 
power across three sample sizes of applying the cutoff 
value of a given model fit index. For example, the bottom 
right panel displays the average statistical power of apply-
ing TLI < 0.95  across three sample sizes with data gen-
erated with sixty items, four levels of between-dimension 
correlation, and four levels of guessing magnitude.

For RMSEA, when the guessing is no greater than 0.1, 
the statistical power is close to one with the between-di-
mension-correlation no greater than 0.3 and the test length 
equal to 30; if the test length increases to 60, however, 
the power of RMSEA drops to 0.5 when the between-di-
mension-correlation is 0.3. When the guessing is 0.2, the 
statistical power is one only with the between-dimen-
sion-correlation is zero and the test length is 30; if the test 

length increases to 60, however, the power of RMSEA 
drops to slightly lower than 0.8. When the guessing is 
0.3 or 0.4, RMSEA has no satisfactory statistical power 
regardless of the between-dimension-correlation and test 
length.

CFI and TLI seem to be robust to the guessing when 
the between-dimension correlation is no greater than 0.3: 
their power remains invariably close to one regardless of 
the guessing value and sample size. When the between-di-
mension correlation is 0.5, guessing seems to have a sys-
tematic influence: the power of both CFI and TLI decreas-
es with the increase of guessing value. Test length also 
plays a role regarding the power of CFI and TLI when the 
between-dimension correlation is 0.5: both indices have 
consistently lower power when the test length is 60 items 
than when it is 30 items. When the test length is 30 items 
and the between-dimension correlation is 0.5, both CFI 
and TLI have satisfactory power (greater than 0.8) when 
guessing is no greater than 0.2; when the test length is 60 
items and the between-dimension correlation is 0.5, CFI 
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Figure 2. Power of RMSEA, CFI, and TLI with different guessing levels in compensatory models
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and TLI have satisfactory power (greater than 0.8) only 
when guessing is no greater than 0.1. Similar to RMSEA, 
neither CFI nor TLI has enough statistical power when the 
between-dimension-correlation is 0.7 regardless of guess-
ing value, sample size, and test length.

4.2 Noncompensatory Model
As the power of RMSEA to reject unidimensionality are 
invariably zero across all simulation conditions, we focus 
on the power of CFI and TLI in the concompensatory cas-
es. Table 4 lists the power of CFI to reject unidimension-
ality across different simulation conditions, and those of 
TLI appear in Table 5.  Different than the pattern observed 
in the preceding compensatory model that guessing mag-
nitude, between-dimension correlation, sample size, and 
test length systematically affect the power of RMSEA, 
CFA, and TLI, here the only discernable pattern is that 
the power of these three model fit indices decreases with 
the increase of between-dimension correlation. In terms 
of guessing, although the power of RMSEA, CFA, and 
TLI change with the change of guessing magnitude, the 
change is not in a systematic pattern as in the compensato-
ry cases. Another difference is that the power of RMSEA, 
CFA, and TLI observed here seem to be considerably low-
er than in the compensatory model.

4.2.1 Without Guessing

As RMSEA has no statistical power regardless of the 
guessing value, the between-dimension-correlation, and 

test length, we focus on CFI and TLI regarding their 
performances with the baseline condition (no guessing). 
Figure 3 plots the mean power rates of these two model 
fit indices across averaged across four between-dimension 
correlation values. Regardless of the test length, their 
statistical power becomes satisfactory (CFI has statistical 
power slightly lower than 0.8 when the test length is 30) 
only when the between-dimension-correlation value is 
zero. In contrast to what has been observed in the com-
pensatory cases where statistical power of RMSEA, CFA, 
and TLI decreases with the increase of test length, with 
zero between-dimension correlation CFI and TLI have 
slightly higher statistical power when the test length is 60 
items than when it is 30 items.

4.2.2 impact of Guessing

As the power of RMSEA remains zero in all simulation 
conditions, it is not possible to evaluate the effect of 
guessing upon the performance of RMSEA. In this sec-
tion we focus on how guessing affects the performances 
of CFI and TLI in the noncompensatory cases. As can be 
seen from Tables 4-5, when data were generated with a 
noncompensatory IRT model, while the power of CFA and 
TLI seem to decrease with the increase of between-dimen-
sion correlation value, there seems to be no discernable 
patterns regarding how their power change as a result of 
the change of guessing value, test length, or sample size. 
To further explore the guessing impacts upon the statisti-
cal power of these two model fit indices, in Figure 4 we 

table 4. Power of CFI to Reject Unidimensionality in 
Noncompensatory Models

table 5. Power of TLI to Reject Unidimensionality in 
Noncompensatory Models
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Figure 3. Power of RMSEA, CFI, and TLI with no guessing in noncompensatory models
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plot the average power rate of CFI and TLI across three 
sample sizes. As can be seen, CFI and TLI have power 
greater than 0.8 only when between-dimension correlation 
is zero and the guessing value is 0.1; however, as far as 
guessing is concerned, despite the fact that the power of 
CFI and TLI changes with the change of guessing magni-
tude, no patterns can be observed that suggest a systematic 
influence of guessing upon their statistical power to detect 
multidimensionality.

5. Discussion and conclusion
It should be noted that due to various warnings and cave-
ats against the use of cutoff values for model fit indices 
for model fit assessment, methodologists have developed 
an equivalence testing approach[57][58] that does not rely on 
common cutoff values but create adjusted cutoff values. 
Such methodological developments notwithstanding, the 
use of cutoff values for model fit indices to assess mod-
el fit still remains hugely popular among studies across 
many disciplines[59][60][61][62][63][64].

The purpose of this study was to reiterate the important 
point that cut off values for model fit indices should never 
be used indiscriminately for dimensionality assessment. 
In addition, we explored how guessing and the nature 
of multidimensionalty, two factors ignored in previous 
studies, could further negatively affect the performances 
of cutoff values for model fit indices in dimensionality 
assessment. Specifically, we systematically investigated 
how guessing affected the statistical power of commonly 
used cutoff values for RMSEA, CFI, and TLI to refute 
unidimensionality with binary data generated with either 
compensatory or noncompensatory IRT models. It was 
hypothesized that as all the simulation studies which es-
tablished the commonly used cutoff values for model fit 
indices were based on factor analysis models, which do 
not accommodate guessing, such cutoff values (RMSEA 
< 0.05; CFI > 0.95; TLI > 0.95) would exhibit poor statis-
tical power with binary data generated with IRT models 
that include a guessing parameter within.

The simulation results show that when data were gen-
erated with a 3PL compensatory multidimensional IRT 
model, increases of guessing value lead to decreases of 
the power of RMSEA, and such decreases were exacer-
bated with the increase of between-dimension correlation. 
For CFA and TLI, when the between-dimension correla-
tion was no greater than 0.3, they were robust to guessing 
effect and their power remained constantly one regardless 
of the guessing magnitude and sample size; the systematic 
effect of guessing upon the power of CFA and TLI ap-
peared when the between-dimension correlation was 0.5, 
in that their power decreased with the increase of guessing 

magnitude, and such decreases became more pronounced 
with a longer test length. When the between-dimension 
correlation was 0.7, all three indices had virtually no pow-
er to detect multidimensionality. When data were gener-
ated with a 3PL noncompensatory multidimensional IRT 
model, guessing did not have a systematic effect upon the 
statistical power of the three model fit indices, although 
it should be noted that a small change of guessing mag-
nitude can result in a considerable change of statistical 
power for a given model fit index. For example, as can be 
observed in Table 6, when the sample size was 500 and 
the between-dimension correlation was zero, the power of 
TLI dropped from 0.921 to 0.513 when the guessing mag-
nitude changed from zero to 0.1. 

We also investigated how the cutoff values performed 
with the baseline conditions in which the guessing value 
was zero (the model reduced to a 2PL compensatory/non-
compensatory IRT model). In the compensatory case, it 
was found that when the between-dimension correlation 
was no greater than 0.5, CFI and TLI exhibited statistical 
power higher than 0.90 regardless of test length and sam-
ple size; RMSEA displayed the same pattern when the test 
length was 30 items. When the test length was 60 items, 
RMSEA performed poorly when the between-dimension 
correlation was 0.5 with sample size equal to 500 or 1000, 
and its statistical power went up to 0.941 when the sample 
size was 2000. None of the model fit indices performed 
satisfactorily when the between-dimension-correlation 
was 0.7, regardless of sample size and test length. It 
seems that when such high correlations exist between 
dimensions, none of RMSEA, CFA, and TLI can statis-
tically differentiate such structures from unidimensional 
structure. In the noncompensatory case, it was found that 
RMSEA had no power at all to detect multidimensionality 
regardless of the sample size, test length, and between-di-
mension correlation. CFI and TLI displayed unsatisfactory 
power (less than 0.8) in most conditions with some excep-
tions: CFI had a power of 0.989 when the sample size was 
500, the test length was 60 items, and the between-dimen-
sion correlation was zero; TLI had power greater than 0.9 
when the test length was 60 items, and the between-di-
mension correlation was zero. 

The well-known advice that model fit indices should 
not be used indiscriminately is corroborated by the results 
found in the baseline conditions where no guessing is 
assumed to exist. Apparently, the power of CFI, TLI, and 
RMSEA is affected by the test length in that (a) with the 
same sample size, a longer test results in decreased power 
of the three model fit indices, and (b) a larger sample size 
is required for the three model fit indices to perform well 
in a longer test. Taking the perspective that the degree 
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to which a model is misspecified is determined by the 
statistical power to detect such misspecifications[30], we 
conclude that with the same generating model and same 
model misspecification type, increased test lengths result 
in amelioration of model misspecification due to the re-
duced statistical power: it is more difficult to detect model 
specification of a less misspecified model. Although we 
only investigated two test lengths in the current study, it is 
expected that with tests consist of more than 60 items, the 
power of these three model fit indices will be lower than 
those presented in Tables 1-3.  Another reason that the 
common cutoff values cannot be generalized is that the 
magnitude of factor loadings impact their performances. 
Heene, Hilbert, Draxler, and Ziegler[65] found that the sta-
tistical power of RMSEA, SRMR, and CFI changes with 
the change of the magnitude of factor loadings. In other 
words, if data were simulated with different item parame-
ters, the results in Tables 1-3 might not be replicated. This 
is further evidence that "golden rules" are extremely diffi-
cult, if not possible, to find.

The findings that the performances of RMSEA, CFA, 
and TLI are subject to guessing effect are hardly sur-
prising. When guessing effect exists, the measurement 
quality deteriorates, and as nicely stated by Hancock and 
Muller[37], "as measurement quality gets poorer, common 
data-model fit indices-absolute, parsimonious, and/or in-
cremental in nature-paint an increasingly and deceptively 
favorable picture of the model's latent structure." In other 
words, the guessing effect introduces noise into data, 
which can mask the true latent structure. What is surpris-
ing, however, is that a small increase of guessing mag-
nitude can result in precipitous decrease of the statistical 
power of a certain model fit index considered in this study. 
Take RMSEA as an example: as can be seen in Table 1, 
when guessing increases from 0 to 0.1, its power drops 
from 1 to 0.015 with a samples size of 1000 and a test 
length of 30 items. CFI and TLI do not have such drastic 
changes of power as RMSEA does, yet an increase of 0.1 
of guessing magnitude can still result in a decrease of 0.2 
to 0.3 regarding their statistical power.

One piece of advice to practitioners and researchers 
who are interested in using model fit indices to assess uni-
dimensionality is that the consequent conclusions regard-
ing unidimensionality should be taken with a grain of salt 
and interpreted cautiously, especially with binary data that 
represent scores on multiple-choice questions. As shown 
in this study, existence of guessing decreases the sensi-
tivity of RMSEA, CFA, and TLI to multidimensionality. 
It is recommended that if model fit indices are used for 
unidimensionality assessment, other techniques such as 
DIMTEST and DETECT that can model guessing should 

be used jointly, although it is possible that different meth-
ods might disagree with each other[66]. When facing incon-
sistence dimensionality assessment results from different
methods, we recommend using the bifactor modeling
approach[16][67], which, unlike the other unidimensionality
assessment approaches that attempt to provide a yes/no
answer regarding unidimensionality, provides a detailed
picture of the consequence of treating the data as unidi-
mensional and allows one to empirically examine whether
and how the model parameter estimates change by fitting
a unidimensional structure to a multidimensional data set.
  One limitation of the current study is that in the 
compen-satory cases, we generated data using item 
parameters that were designed to realistically mimic a 
simple structure of multidimensionality with each 
item predominantly measuring one dimension. 
Although not strictly a simple structure, the generating 
items are distinct from those used to mimic a complex 
structure of multidimensionality, and it is expected that 
the cutoff values of the three model fit indices 
considered in the current study will perform dif-ferently 
with items following a complex structure.

Taken together, the results in the present study show
that when data follow a compensatory multidimensional
structure, guessing systematically decreases the power
of the commonly used cutoff values of RMSEA, CFA,
and TLI. When data follow a noncompensatory multidi-
mensional structure, these cutoff values do not perform
well and guessing does not seem to affect their power in a
systematic manner. Such findings point to two directions
for possible future research. First, as guessing systemat-
ically affects the distribution of model fit indices, which
is another reason cutoff values for these model fit indices
should not be used, the performances of other more recent
methods such as the equivalent testing approach men-
tioned earlier and the permutation test[68][69], when dealing
with data containing guessing, should be investigated. The
finding that cutoff values for model fit indices performed
poorly in assessing the dimensionality of data generat-
ed with noncompensatory models, together with those
by Hattie, Krakowski, Rogers, and Swaminathan[42] and
Svetina[43], suggest that dimensionality assessment tech-
niques that are based on the compensatory framework do
not work well with noncompensatory data. In that regard,
methods specifically designed for noncompensatory data
are direly needed.
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